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Charged particle with magnetic moment in the 
Aharonov-Bohm potential 

M Bordag and S Voropaevt 
UNversitSt Leipzig, FB Physik, Augus[usplat2 to, 0-7010 Leipzig, Federal Republic ofGermany 

Received 21 April 1993 

Abstract In this paper we will consider a charged quantum mechanical particle with a spin.; 
and a gyromagnetic ratio of 8 f 2 in the field of a magnetic suing. Vie interaction of the charge 
with the string is fhe well known Aharonov-Bohm effect. and the contribution of the magnetic 
moment associated with the spin in the case g = 2 yields additiod scaftering and mm modes 
(one for each flux quantum). The anomaly of the magnetic moment (i.e. g > 2) leads lo bound 
states. We considered two methods for Veating the case g > 2. 

The firs1 is the method of self-adjoint extension of the corresponding Hamilton openlor. 
It yields one bound SW as well as additional scattering. In We second we will wnsider three 
exactly solvable models for finite flux Lubes and than consider the limit of zero radius. For a 
finite radius. lhere are N t 1 bound states (N is the number of flux quanla in the tube). 

For R - 0 the bound state energies tend lo be infinite so that this limit is not physical. A 
sensible limit can be obtained by tending g -+ 2 simultaneously with R -t 0. Thereby only 
for fluxes less than unity, the results of the method of self-adjoint extension are reproduced 
whereas for larger fluxes N bound slales will exist. We wnclude therefore fhal h i s  method is 
no1 applicable. 

We will discuss the physically interesting ca%e of a small but KNte radius whereby the natural 
scale is given by the anomaly of the magnetic moment of the elecwon a. = f(g - 2) a W3. 

1. Introduction 

There is a continuous interest in the study of scattering and bound states in the potential of 
a magnetic string 

@ A = - e  
2Rl ' 

with the flux 0. The interaction of a charged particle with this potential is described by the 
minimal coupling 

e 
p + p - - A .  (2) 

?l= 08(x)8(y)e3 (3) 

C 

The corresponding magnetic field 

vanishes everywhere except on the flux line where it is infinite. 
The famous Aharonov-Bohm effect [ I ]  consists in non-trivial scattering of a charged 

particle off potential (1). It is due to the interference of phaseshifts of the wavefunction 

t PeI"anen1 addms: Vemadsky Institute, Laboratory of Theoretical and Mathematical Physics. Kossygin Sweet 
19. Moscow, Russia. 
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which are influenced by the potential (1). In an ideal situation the wavefunction vanishes 
where the magnetic field is non-zero, demonstrating the role of the potential. In the last few 
years, the AB effect was studied in connection with fractional spin and statistics in [31 and 
with its contribution to cosmic strings in [4,S]. There is a close relation to the calculation 
of propagators in chromomagnetic background fields [6,7]. 

While the initial investigation concerns a scalar particle, the inclusion of the spin is 
natural. In the case of a particle with spin 8, there is an additional, with respect to (2). 
interaction of its magnetic moment 

M Bordag and S Voropaev 

P = gPBs/ft (4) 

A'G = p7i 6) 
(g being its gyromagnetic ratio) with the magnetic field (3), contributing 

to the Hamiltonian. As it stands, this is a point-like interaction and must be treated in 
an appropriate manner (see e.g [8, 91). From the mathematical point of view, one has to 
consider the corresponding Hamilton operator on a domain of functions vanishing on the 
flux line so that the term with the 8-function disappears. On this domain, the operator is 
not self-adjoint and its self-adjoint extensions (a one-parameter family labelled by A) define 
all possible point interactions (3). 

In the case of a neutral particle with magnetic moment (i.e. with interaction (S)) ,  this 
can be found in book [9]  within a general mathematical framework. For a spinor particle. 
using the Dirac equation, this analysis has been done in [4,10,14].These authors have 
shown that the self-adjoint extensions can be defined by proper boundary conditions on the 
wavefunction on the flux line. Also, an analysis using a regularized &function was done in 
[4] and [16]. Therein was the possibility of a bound state discussed above. Similar results 
exist for spin-1 case [12]. 

In general, the Dirac equation leads to a magnetic moment which is characterized by 
a gyromagnetic ratio of g = 2. This case is exceptional from the point of view of its 
interaction with a magnetic flux line because the repulsive force of the AB effect is exactly 
compensated for by the attractive force of the interaction of the magnetic moment with 
the flux (in the case when they are antiparallel). This produces zero modes, i.e. bound 
slates of zero binding energy. Thii situation was probably first mentioned in [2] where 
it was shown that a spin-$ particle? in a magnetic field (in general, non-singular) of total 
flux cp/(hc/e) = N + 8, 0 < 8 < 1 has N zem-energy normalizable eigenstates. It 
has the remarkable properly that its Hamilton operator factorizes, and both equations have 
essentially the same form. This is an example of a supersymmetric quantum mechanical 
system. 

Now it is clear that an anomalous magnetic moment destroys this property. Having in 
mind realistic particles such as the electron with its anomaly factor 

a e = - -  g - 2  -0.001 1.59 (6) 

we are considering in the present paper a particle with spin 8 and the gyromagnetic ratio 
g in 3 different, exactly solvable models of regularization of the &function by a flux 
tube of radius R. We are also establishing their connection with the approach of self- 
adjoint extensions. We should consider to what extend these models correspond to different 
extensions. In each model there are N + 1 bound states, if the gyromagnetic ratio g is larger 
than two and the magnetic moment is directed anti-parallel to the magnetic flux, otherwise 

t Described by the Pauli (with g = 2) and also by the D i m  equation. 
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there are no bound states. This is one bound state more than there are zero modes in the 
case of g = 2. When shrinking the radius of the flux tube to zero, the gyromagnetic ratio 
must tend to 2 in order to have finite bound-state energy. 

The models we use are (7i = H(r)es )  
0 

(i) H ( r )  = - @ ( R  - r )  Z R =  
0 

(ii) H(r)  = - ' tnrR  
0 

(iii) H ( r )  = -a(r - R )  
ZRR 

(homogeneous magnetic field inside) (7) 

O(R - r )  (magnetic field proportional to l/r inside) (8) 

(9) (a cylindrical shell with &function) . 
For simplicity, we consider a non-relativistic Hamilton operator 

- 1  e 2  H = - ( ~ - - A )  2m C +,.m 
with p given by (4). 

Due to spin conservation, the magnetic interaction (5) can be replaced by 

f$g/QH(r) (11) 

& corresponding to the spin projection on the flu line. In what follows, we restrict ourselves 
to the minus sign, in which the magnetic moment leads to a binding force. Furthermore, 
we choose Q z 0; for @ c 0 the spin direction mwt be reversed. 

This paper is organized as follows. In the next section we consider the point interaction 
as self-adjoint extension and obtain boundary conditions on the wavefunction at the origin. 
In the following section, we consider magnetic flux tubes ( 7 x 9 )  with finite radius R and 
write down the wavefunctions for hound states and scattering states. In the fourth section, 
we consider the limit R -+ 0 and establish its connection with the self-adjoint extension 
and look into the physical consequences. Conclusions are given in the last section. 

2. Self-adjoint extension 

The SchWinger equation for the problem considered here can be written in the form 

where A and H are given by (1) and (3) for an infinitely thin flux tube and by ( 7 x 9 )  
for a finite flux tube, respectively. After the separation of the angular dependence and the 
translational motion parallel to the flux tube by 

the equation reads (for simplicity. we set p3 = 0) 

with 

@ A = -4(r) 
2nr 
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6 = O / ( h c / e )  is the flux measured in units from the flux quantum, h(r)  = i&r) is the 
radial disbibution of the magnetic field (it is normalized according to J T d r r h ( r )  = I )  and 
with the energy E = E/(2m/h2) .  

We shall consider the case of an infinitely thin flux tube: a ( r )  = 1 and h(r )  = 
( l / r ) & ( r )  . Being inserted into the Schrijdinger equation (14), this is a potential with 
concentrated support. The standard technique to handle them is the method of self-adjoint 
extension (see the textbook [9], where it is extensively used in quantum mechanics). One 
starts with the Hamilton operator 

M Bordag and S Voropaev 

which coincides with the Hamilton operator I? of equation (14) in the interval r E (0, CO), 
i.e. everywhere except at the point r = 0. This is equivalent to considering I? on the 
domain of functions 

' D ( H ~  = (11. E P (ro, CO)) I $(o) = o} (16) 

i.e. on functions vanishing as r -+ 0. After that one observes than the operator fi0 on 2) 

is symmetric but not self-adjoim By enlarging the domain 'D in a suitable manner to 8, 
I? can be extended to become self-adjoint on 5. This self-adjoint extension can than be 
considered as a correct definition of the initial operator I? in equation (14) involving the 
&function potential. 

In our case this procedure is as follows. The eigenfunctions of f i 0  are 
= &-SI (&) 

(m = 0. & I ,  . . . ). The scalar product 

(9. ~ 0 1 1 . )  = l m & v ( r ) 2 0 ~ ( r )  

implies that I?o is symmetric if 

For the functions &,(r) (17), this is clearly fulfilled. 
Now, N shall be the integer part of the flux 

6 = N + X  ( 0 < 8 < 1 ) .  
For any 11. E 'D, there are functions 9 $ D, fulfilling condition (19). Their behaviour as 
r - t O i s  

9 - r-6 + Ari A is real . (20) 
The corresponding eigenfunctions are given below. Adding them to the domain 'D (16) 
of the operator fio we obtain the enlarged domain 8. It can be shown that I?o on 8 is 
self-adjoint. The parameter ,I. is arbitrary. Its dimension is r-=. By that different choices 
of A lead to different self-adjoint extensions. 

The corresponding eigenfunctions in the continuous part of the spectrum ( E  = kz )  are 

$s(r) = J:(kr) + B N ( Q  H,!"(kr). (21) 
In general, the scattering amplitude is defined by the asymptotics of the wavefunction as 
r + CO: 

+ f ( k ,  v)- (22) J I ( ~ )  e i k r c w  
J; 
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where 'p is the scattering angle. The usual Ahmnov-Bohm scattering (in other words, 
scattering without magnetic moment) corresponds to the first term in the RHS of (21). and 
the scattering amplitude is well known. In expanding 

its contribution reads 
1 

f i B ( k ,  (o) = - (eialm-lm+81) - 1) e-ix/4 , 

4 
In that respect, the presence of the contribution of the Hankel function in RHS of (21). which 
describes a outgoing cylindrical wave, leads to an additional contribution to the scattering 
amplitude 

(24) 
1 fm(W = fiBW + LN- = & B N ( ~ ) .  

There is one eigenfunction describing a bound state with binding energy K = -E:  

$ ~ ( r )  = Kj ( f i r )  . (2-5) 
Now, by expanding solutions (25) and (21) as r + 0, we can obtain the connection of 

the bound state energy K with the parameter A of the self-adjoint extension 

by using (20). From this formula it follows that the bound state would occur only in the 
case of a negative parameter of the extension A. For the scattering states, we obtain from 
(22) and (20) 

Hence, for any parameter A of the extension, there is an additional scattering, and for h e 0 
there is a bound state. In the latter case, the scattering amplitude can be expressed in terms 
of the bound state energy 

(28) 
i sin z8 

BN(k)  = , . 
e-m8 - ( K / k Z ) j  ' 

3. Three models 

The regularization of the &function interaction can be done by many different models for 
a Enite flux tube. We consider here the simplest examples that are exactly solvable. We 
write down the wavefunctions inside the tube and connect them with the outside function. 

The outside function (r > R )  is an eigenfunction of the Hamilton operator (15). In the 
case of E < 0, this eigenfunction is given by 

$in (r)  = Km-s(&r) (29) 
and describes the bound state solution. Its logarithmic derivative is 
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In E = kZ > 0, we obtain the outside scattering solution (r 

M Bordag and S Voropaev 

R)  
= /Im-sl(kr) + &(k)ff&(kr) (31) 

and its logarithmic derivative is 

Below we are interested in the h i t  R -+ 0. For E e 0 we note that 

where two cases have to be distinguished. 

3.1. Homogeneous magnetic field 

In this model the magnetic field is homogeneous inside and zero outside. The functions 
h(r) and a(r)  are 

(34) 
2 rz 

RZ 
h(r) = -O(R - r ) -  a(r)  = -&3(R - r )  4- O(r  - R )  . 

The SchriMinger equation is 

The solution which is regular in r = 0, is given by 

We need its logarithmic derivative in r = R 
a 
ar R I  R-$m(r)l,SR-O 

for m 2 0, and we use the notation x = J=ZR 

For x + 0 we note that 

with 

The properties (11 > 0 and PI > 0 can be checked. 
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3.2. Magneticfield proportional to I / r  

In this model we have 

(39) 
1 r 

r R  R 
h(r) = -Q(R - r )  a(r )  = -@(R - r )  + @(r - R)  . 

The corresponding equation is 

- -6- @m(r) = 2 r R  

2 (---r- 1 a a + ( m - 6 5 )  
r a r  ar r2 (40) 

and it has a solution regular in r = 0, 

with the notation 8 ,/=. Its logarithmic derivative is 

Form 2 0 andx E &R * 0 we note that 

R2 = m - B + 2 - g S 0 1 2  + f l z x Z +  . . . 
2 

with 

1 F~ (7 + I ,  Z +  2m; 26) 
012 = - 

1 + 2m 
t FI (9". + m; U) 

and 

Also in this case the properties a2 > 0 and 82  z 0 can be checked. 

3.3. Cylindrical shell with 6-function 

Moving the 6-function from r = 0 to r = R, one obtains a cylindrical shell on which the 
magnetic field is infinite:t 

The radial equation reads 

@m(r) = e h @ ) .  
(---r- 1 a a + ( m - 6 @ ( R - r ) ) '  

r ar ar r2 (43) 

In this case the 8-function, due to being moved away from the origin, can be treated as 
usual in one-dimensional case and substituted by the known, boundary conditions 

(44) 
8- g 

r&$m(r)lR-o = - p m ( r ) l R .  

t This mcdel is intensively used in [IO]. 
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Then the solution of equation (43) are Bessel functions 

for r < R 

for r > R Jlm-sl(kr) + B d k )  HI(D!sl(kr) 
= 

with some coefficient a, and from condition (44) it follows that 
I a R3 = -588 + rF@m(r)lmR4 

Jh, (J?R)  for s > o  = -;ss + mm 

For x = G R  + 0 we have 

(45) 

with 

3.4. Bound state energy and scattering amplitude 

The solutions in all three models are determined by the condition that 

R, = Ri (i = 1,2,3).  (47) 

There are scattering solutions for all values of the parameters. They can be obtained by 
solving (47). The scattering amplitude is 

We shall now consider the bound-state solutions. They do not exist for all values of 
the parameters. In considering the behaviour of Ri and Re, as functions of x = G R ,  
it can be seen that R, decreases starting from R,(O) = -Im - 81 (cf (33)). while R l ( x )  
increases starting from Ri(x)  = Iml - 8 + i(2 - g)Smcui (cf (38). (42). (46). So, solutions 
with binding energy K~ = & = x / R  of equation (47) are possible for 

In the case of g = 2, all solutions have vanishing energy; they correspond to zero modes. 
In general, the solution of (47) is 

x = f ( 8 .  g, m) with x = K, R (50) 

where f is a dimensionless function. Some of the lowest solutions of equation (47) are 
shown in figure 1 for the model with the cylindrical 8-shell. Similar pictures can be drawn 
for the other two models. It can be seen that, in general, there is no simple tule for the 
energy levels K, = x / R  for general values of the parameters. 
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Figure 1. The solutions x = f (d ,g .m)  of equation (SO) for m = 0.1. ... 4 and 8 = 
2.2. 2.1, 2.05. 2.01. 

4. The limit R + o 

In the limit R + 0, with all other parameters fixed, the bound state energy increases 
unbounded as can be seen from (50). This indicates that the limit R -+ 0 in the models 
with the finite flux tube is not physical, at least not in the non-relativistic approximation 
chosen here. 

One possibility of getting a sensible limit as R + 0 is to let a, go to zero together 
with R. Clearly, this is not meaningful, having in mind physical particles. But this makes 
possible both establishing the connection with the method of self-adjoint extension and, as 
will be seen below, clarifying its applicability to the system under consideration. 

We will consider 

a, __ R - 2 + 0 .  
2 

In this case all solutions x of equation (SO) tend towards zero, and the equation (47). which 
defines the bound states, can be approximated. We obtain for the highest angular momentum 
the equation 

where N is the integer part of the flux, and 

for the lower angular momenta, using (33), (38). (42) and (46). 
For g -+ 2, R being fixed, K,,, (m = 0, 1, ..., N - I )  tend to zero in proportion to 

g - 2, whereas KN behaves like (g - 2)'''; i.e. tends more quickly to zero. Therefore, K, 

corresponds to the zero modes (for g = 2). whereas the state of KN has no equivalent in 
that case. It can be expected that its wavefunction vanishes. 
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In the case of N = 0, the flux for R + 0 is less than unity and a finite binding energy 
of the only bound state can be obtained by substituting 

g - 2  2 R Z S g - 2  
_. +-- 

2 ai 2 (53) 

into the initial equation (12) and after that performing the limit R + 0. After the substitution 
(53), the bound state. energy is determined by 

(instead of (51)), and we observe from equation (26) that the parameter h of the extension 
is actually the anomaly of the magnetic moment (up to sign): 

8 - 2  
2 

A=--. (55) 

This treatment of the &function is equivalent to the general approach to the two-dimensional 
&function in the Schriidinger equation by Berezin and Faddeev [8] and Albeveno [9], where 
the need to renormalize the coupling was pointed out. 

In the case of Ruxes larger than unity (N > I), there are bound states with energy K, 

larger than K,V; renormalization (53) is not sufficient to keep these states finite. Instead, 
using (52). one must substitute 

g - 2  B - Z R 2  -+- 
2 2 

in the initial equation (12). Then, instead of (52). the binding energies are given by 
8 - 2  8ai 

Km = - 
2 Bi + 1/(W - mJ - 1)) 

(57) 

(m = 0.1,. . . , N - 1). In this case we have KN = 0. 
A different way of understanding the limit R + 0 is to keep R small but finite. In that 

case there. is a natural scale given, on the one hand, by the value of the anomaly of the 
magnetic moment of the electron 

g - 2  a, = - = 0.001 159 
2 

and on the other hand, by the bound state energy being non-relativistic, i.e. smaller than 
the electron mass because we are considering the non-relativistic Schrodinger equation. 

In the case of a flux less than unity, the energy is non-relativistic for KO much less than 
the inverse Compton wavelength of the electron, KO << l/&, and the radius must satisfy the 
inequality 

ai) 2h, . g - 2  r(i+q 
A >> (- 2 2 ~ 1 - 8 )  

via equation (51). In that way, it can be considered to be smaller than so that the flux 
tube can be considered as thin. The considerations done here for small x = , E R  should 
mean that the size. of the orbit of the bound states is much larger than the radius R .  

Similar considerations apply to the case of the flux being larger than unity. Here, the 
radius must satisfy 
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This condition is stronger than (58). Nevertheless, R may be made smaller than & so that 
the flux tube can be thin in this case as well. 

The limit R + 0 for scattering states should be considered; i.e. k* = t > 0. Expanding 
B, ( k )  (48). the additional scattering amplitude for a given angular momentum m and energy 
k2 for x -+ 0 appears to be 

with u = Jm -61. From this formula it can be seen that B,(k) vanishes in the limit R + 0. 
all other parameters being fixed. This is meaningful in the case g c: 2 where there are no 
bound states. 

It was shown above that in order to have finite bound-state energies for g > 2, the limit 
17 -+ 0 must be takenas g -+ 2 

For 0 < 6 < 1, one must use the substitution (53) which gives 

. .  

i.e. the same formula as in the method of self-adjoint extensions (27). 

gives 
For a flux larger than one, S = N + 8 z 1, one has to use the substitution (56), which 

1) ( m = ~ )  (62) 

(63) 

1 B N ( k )  = - (e'"' - 
2 

and 
B,(k) M R2"-"'-" -+ 0 (VI = 0,1,. . ., N - I) .  

Therefore, the additional scattering takes place only for the highest angular momentum. 

5. Conclusions 

We considered a charged quantum mechanical particle with a spin-4 and gyromagnetic ratio 
g 2 2 in the field of a magnetic string. As is known, the interaction of the charge with 
the string is the well kown Aharonov-Bohm effect and the contribution of the magnetic 
moment associated with the spin in the case g = 2 yields additional scattering and zero 
modes (one for each flux quantum). An anomaly of the magnetic moment (i.e. g > 2) 
leads to bound states. We considered two methods for treating the case g > 2. 

For an ideal string, the interaction of the spin with the magnetic field (5) is point- 
like and singular; i.e. the magnetic field containes the two-dimensional &function (3). A 
mathematical approach to treating this is the method of self-adjoint extension. It yields a 
family of operators labelled by a real parameter A. For all values of this parameter, there 
is an additional scattering amplitude (24) resulting from the contribution of the magnetic 
moment; if X < 0, there is one bound state (26). The main goal of the extension is to 
include a singular solution (21) and (25) into the domain of the Hamilton operator (15). It 
should be remarked that this method-although mathematically c o m t  (or, at least, may be 
cor rec t t i s  not satisfactory from the physical point of view, because the parameter A of 
the extension does not correlate to physical parameters like the gyromagnetic ratio (which 
does not enter this method at all). 

A different approach is to consider non-singular flux tubes and the shrinking of the tube 
radius to zero. This is equivalent to regularizing the &function in the magnetic field by 
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some less singular profile. We used three models for which the Schrildinger equation (12) 
can be solved explicitly (it is actually a Pauli equation in this case). The coventional result 
is that there is an additional scattering due to the magnetic moment and that there are bound 
states for g > 2. This is not surprising since the existence of zero mode for g = 2 suggests 
the binding of a particle as long as there is an additional attractive force. For g slightly 
larger than 2, there are N + 1 bound states, where N is the integer part of the flux. In 
general, the dependence of the energy levels K, on g and on the flux is complicated, this 
can be seen in the figure. 

We considered the case g -+ 2. In this case, all K,,, tend to zero. Form = 0,1, . . . , N - 1, 
the solutions turn to be the above-mentioned zero modes; form = N, the solution vanishes. 

The limit R + 0, all other parameters being fixed, is not physical for g > 2 The 
reason is that the bound state energies K~ enter the defining equation (50) multiplied by the 
flux tube radius R: this is also implied by general dimensional considerations. Therefore, 
K,,, tend to infinity for R -+ 0. 

One possibility in heating this problem is to tend the gyromagnetic ratio g in the 
initial equation (14) to 2 along with R + 0. Although this is not meaningful for real 
physical particles, it can be viewed as a sort of renormalization of g brought about by 
the increasing singularity of the potential as R -+ 0. On the other hand, it allows one to 
establish the connection with the method of self-adjoint extension. Two cases have to be 
distinguished. Firstly, when the flux is less than unity, g - 2 tend to zero proportionally to 
RS, equation (53). For g > 2, there is one bound state, its energy is given by equation (54). 
This is essentially the same situation as in the method of self-adjoint extension and the 
parameter A of the extension can be related to the gyromagnetic ratio, equation (55).  Thereby 
the dependence on the parameters of the models used enters the renormalization (53) of the 
gyromagnetic ratio only. Such a renormalization is known in the mathematical approach 
of 181 as welL For the scattering amplitude, there is a contribution in addition to the usual 
Aharonov-Bohm scattering (equation (61)). It is given by the same formula as in the method 
of extension, equation (28). Therefore, for 8 4 I both approaches are equivalent. 

One observes a different feature for a flux larger than unity. In order to keep all bound 
state energies finite, one is forced to tend 8-2 to zero in proportion to RZ (see equation (56)). 
i.e. much faster than in the previous case. Thereby the energy of the state KN (with the 
highest angular momentum m = N )  tends to zero, whereas for m = 0, I ,  . . . , N - 1 the 
energies K, are finite. The additional scattering in this case takes place for m = N only 
(see equation (62)); for m = 0.1, . . . , N - I ,  B,(k)  (equation (63)) vanishes for fixed 
parameters. This is clear because the wavefunctions in this case are concentrated in the 
region of small R. For sufficiently high momenta k, scattering can also be expected in 
this case. We conclude, therefore, that for fluxes larger than one. the two approaches yield 
different results. This must not be regarded as a contradiction, for the following reasons. 
In the method of self-adjoint extension, the input information, which is contained in the 
Hamilton operator (15) makes reference neither to the magnetic moment of the particle, nor 
to the magnetic field ‘Fi (3), nor to the integer part N of the magnetic flux (it enters in 
the combination m - S only). Therefore, we can conclude that the method of self-adjoint 
extension is only applicable for fluxes less than unity, or that a flux larger than unity is too 
singular for being described by the method of self-adjoint extension. 

The physically interesting case is to keep the flux tube radius small but finite. The 
natural scale for the smallness of g - 2 is given by the anomaly ae = (g - 2)/2 (6)  of the 
magnetic moment of the electron and, since we use a non-relativistic equation, by requiring 
the radius of the tube not to be too small so as to have non-relativistic bound state energies 
Km <<me (m. is the electron mass). Under these conditions there are approximately N + 1 

M Bordag and S I’oropaev 
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bound states. The exact number is given by equation (49) and depends on the model used. 
However, this dependence is weak for small a, as can be seen from equation (49), where 
cui enters multiplied by g - 2. Furthermore, it should be emphasized that the physical 
restrictions to R and g - 2 allow the flux tube to be thin in the sense that K,R << 1 is 
possible; i.e. the orbit size of the bound states is much larger than the radius of the flux 
tube. 

We conclude, therefore, that for a gyromagnetic ratio larger than 2 and for real physical 
parameters, the flux tube cannot be shrunk to a line. A natural extension of these 
investigations would be a consideration of the Dirac equation with an additional magnetic 
moment (i.e. including a term (g-2)u”vFn,). In that case, the limitation to the bound state 
energy being non-relativistic is not necessary and smaller R can be considered. Furthermore, 
one can speculate that the anomaly of the magnetic moment which is known to decrease 
in strong magnetic fields [15], will eventually influence the limit R + 0. 

A further open question is whether the interaction which comes from the anomaly a. of 
the magnetic moment can be treated in perturbation theory with respect to a. starting from 
the known solutions (especially from the zero mode of [2]) for an arbitrary profile of the 
magnetic field inside a finite flux tube. 
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